Average Brain Models: A Convergence Study
نویسندگان
چکیده
We present a completely automatic method to build stablee average anatomical models of the human brain using a set of magnetic resonance (MR) images. The models computed present two important characteristics: an average intensity and an average shape, both in a single image. We provide results showing convergence toward the centroid of the image set used for the computation of the model. In particular, the RMS distances between the model and the MR images contained in the set stabilize in a range of 2.88mm to 3.36mm from a range of 4.62mm to 5.51mm initially after only one iteration. As for the innuence of the reference image chosen for the model construction, this is minimal with diierences of about 1.0mm, from approximately 3.5mm initially. These results ensure the usefulness of our approach. Moddles moyens du cerveau: Une tude de convergence RRsumm : Nous prrsentons une mmthode complltement automatique de construction de moddles moyens anatomiques stabless du cerveau humain en utilisant un ensemble d'images de rrsonance magnntique (RM). Les moddles calcull ont deux caracttristiques importantes: une intensitt moyenne et une forme moyenne, toutes deux dans une seule image. Nous prrsentons des rrsultats montrant la convergence du moddle vers le centroode de l'ensemble d'images utilisses lors de la construction. En particulier, les distances RMS entre le moddle et les images de l'ensemble se stabilisent a l'interieur d'un intervalle de 2.88mm 3.36mm aprrs seulement une ittration, ces valeurs btant dans un intervalle de 4.62mm 5.51mm initialement. Quant l'innuence de l'image de rrffrence choisie pour la construction moddle, elle est minime avec des diiirences d'environ 0.9mm, initialement a 3.5mm. Ces rrsultats assurent l'utilitt de notre approche.
منابع مشابه
Automatic Computation of Average Brain Models
We present a completely automatic method to build average anatomical models of the human brain using a set of MR images. The models computed present two important characteristics: an average intensity and an average shape. We provide results showing convergence toward the barycenter of the image set used for the computation of the model.
متن کاملA Comparative Study of Two Technical Analysis Tools: Moving Average Convergence and Divergence V/S Relative Strength Index: A Case Study of HDFC Bank ltd listed in National Stock Exchange of India (NSE)
Technical analysis is the forecasting of future price movement based on an examination of past prices. Some scientist found that the study of historical prices cannot predict future prices. In this research we intend to study which technical analysis tool is better for prediction of future price movement, for this purpose we are studying two the most strongest technical analysis tools is called...
متن کاملEffects of convergence of the axial walls on the retention of full veneer crowns
Effects of convergence of the axial walls on the retention of full veneer crowns Dr. F. Nejati Danesh* - Dr. M. Savabi ** - Dr. R. Darabi*** *- Assistant Professor of Dental Prosthodontics Dept. - Faculty of Dentistry – Isfahan University of Medical Sciences. **- Assistant Professor of Dental Prosthodontics Dept. Faculty of Dentistry – Isfahan University of Medical Sciences. ***- Resident of De...
متن کاملA Note on the Convergence of the Homotopy Analysis Method for Nonlinear Age-Structured Population Models
In this paper, a theorem is proved which presents the series solution obtained from the homotopy analysis method is convergent to the exact solution of nonlinear age-structured population models.
متن کاملComplete convergence of moving-average processes under negative dependence sub-Gaussian assumptions
The complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. As a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Vision and Image Understanding
دوره 77 شماره
صفحات -
تاریخ انتشار 2000